Enter your email address to subscribe to the Lean Visual blog and receive notifications of new posts by email.

Audit Process for Analyzing Standardization of Work in Lean Manufacturing

Getting Ready to Switch Gears

As I look to begin a new series on visual management as it relates to Total Productive Maintenance (TPM) programs and systems, I want to bridge some concepts from the recent past with what will be needed as the new series unfolds.  Specifically we need to look at standardization across the people, processes, structure and organization – our four levels of the pyramid.

Most companies speak loosely when it comes to standard work (SW), work instructions (WI), standard operating procedures (SOP), operator method sheets (OMS), training within industry (TWI), and other programs named with acronyms.  There are usually two parts of the equation that generate issues with standardization of work in lean manufacturing:

  1. The knowledge of the person creating the standard
    • Experience in the given situation
    • Training or expertise in target area or topic
    • Ability to clarify and crystallize that information into a format that adult learners learn
    • Ability to implement or deploy those standards
    • Ability to manage the standards when in use, including change management, audits, and enforcement
  2. The adoption rate of the operators to use the standard
    • Their understanding of the “why” of the document
    • Their understanding of the “how” of the document
    • Their willingness to follow the document
    • Their input on the continuous improvement of the document
    • Their responsibility and role in change management

Where can these issues come up?

I recently experienced firsthand the part one issues regarding standards in three separate instances.  There was the 10 year employee that was moved from Customer Service and HR into an EHS leader role at a plant; there was the 20+ employee who was a great operator with deep experience in the company that was “given” the Continuous Improvement leader role and the mantle to implement a 5S program; and there was the person had had very little credibility in the organization tasked with rolling out a lean program for the company that required skills to sell it up and down the company leadership ranks.  In each case the standards were either non-existent or non-effective.  So why do companies make these decisions?

Here is a checklist or audit process for analyzing the current state of standards:

  • Is the Standard Work documentation readily available within the work area?
  • Is all required safety equipment referenced on the Standard Work document being used?
  • Are all identified safety key point(s) in the Standard Work document being followed?
  • Are all identified quality key point(s) in the Standard Work document being followed?
  • Are all identified productivity key point(s) in the Standard Work document being followed?
  • Are all the referenced documents and systems up to date?

Bullets 2 – 4 are “Stop and Fix” findings because these could lead to very detrimental issues later.  When standards are not followed, you can have errors occurring that are safety, quality, productivity or delivery related.  When you dig deeper into the errors, you will typically find the root to be the fact that a standard does not exist, that an existing standard is not being followed, or that the standard exists and it is being followed but it needs to be revised.

Errors exist primarily for three reasons:

  1. A standard process does not exist
    • Note:  Process variation is increased when operators perform tasks differently and inconsistently.  Reducing process variation is a foundation of continuous improvement.
  2. A standard exists, but it was not followed
    • Note:  Don’t confuse a “standard expectation” with “standard work”
  3. The Standard Work exists, it was followed … but the process or tools are flawed, insufficient, outdated, unstable or incapable
    • Note:  The process or tools need to be enhanced or changed to meet the target

What is the value of these foundational elements for the standardization of work in lean manufacturing?

It will be very difficult to sustain certain elements of the visual management in a TPM program if these foundational elements are not in place.   In fac,t change management and standards are two key Core Competencies that a company can have.  Those that are good or great at it will typically out run the rest of the pack, leaving competitors saddled with safety, quality, productivity and delivery issues.  Take a moment to use the provided checklist to see what gaps you might have.  The finding from this reflection will be very important as we move into the next series. Until then, “see with open eyes, and understand with an open mind.”

Click below for a handy TPM related e-book from Brady!

Brady’s Preventive Maintenance Made Visual E-Book

10 Steps to Managing Conflict in a Lean Workplace

Lean Conflict Management in the Pyramid

Where do conflicts arise from?  Is it just between people?  Can conflict arise between people and processes?  Have you ever seen conflicting processes?  How about a process that conflicts with the structure of your company?  How about new structures, processes or people that conflict with your organization’s culture?  I believe we get conflicts within, and between all levels of our pyramids.

Conflict in a Systems Thinking Pyramid

A Few Ways Conflict Is Created or Lasts in the Workplace

There are many practical ways to deal with conflict.  Many people will take a quick and easy approach which doesn’t always yield a sustainable resolution.  Often the problem is that the conflict has existed for a long time and a quick fix just isn’t going to cut it.  Sometimes we like to hang-on to a conflict because it gives us power or authority over an issue.  I’ve seen instances where conflict was purposely designed into existence.

Some examples include:

  • Adding a personality to a team that isn’t going to fit just to get some edge happening
  • Putting a new process into a structure that isn’t capable to support it
  • Creating a new structure that isn’t consistent with the organization’s culture or won’t fit easily into the processes that are established.

At the time I didn’t see the point, but in retrospect, when it was carefully managed, some of the “created conflict” actually improved the situation.

So here is my take on managing conflict.  I also put the “steps” in relative order of how I have seen effective conflict management handled.

1.  Take responsibility for dealing with the conflict
You are the best person to get this done.  If not you, who?  Do you trust anyone else?

2.  Recognize that there are 2 sides to every story or conflict
Actually, I like to think there are 3 – your version, my version, and the truth

3.  Listen
Just like in grade school – put on your good listening ears

4.  State the problem
Remember this is your first phase of problem solving

5.  Focus on job-related actions or elements of the conflict
Pulling out the ‘ole RASIC model – are you the R, A, S, I or C?  Is the other person the R or A?

6.  Ask questions
This will give more context and put the “meat on the bones” of the issue

7.  Separate the person from the behavior
You won’t get very far if your approach is to attack the person

8.  Get agreement on the conflict or problem
Yeah, right.  He said, she said.  BUT, if you don’t do this, you might as well stop now

9.  Tell your “side” of the story.  Let them tell their “side”
Evaluate where the problem lies -> closer to you or them?  Think of cause and effect

10.  Ask for commitment to resolve the conflict, no matter what
Resolving conflict won’t be for the faint of heart.  Are you in this for the long-haul?

Now What?

Once you’ve made it through step 10, your now getting to the crux of the conflict.  If you’re following an 8-Step Problem Solving approach (like I’ve discussed in the past), you’re at about Step 5 – Identifying Countermeasures.  This assumes that you’ve done an adequate job of Breaking Down the Problem (Step 2) and Identifying Potential Causes (Step 4).

So how does this help with our pyramid?

I’ll let you pull an actual conflict that you are currently having and give it a go through the 10 steps.  Remember – practice makes better, not perfect, because we don’t let perfect get in the way of better.

I’ve got something really cool brewing with respect to Total Productive Maintenance and visuals.  This will be a longer blog series with some great downloads.  Can’t say too much about it yet, but keep coming here and viola, there will be this series soon.  Until next week, “see with open eyes, and understand with an open mind.”

5 Principles of Lean Relationship Building

Lean Initiatives Work by Building Relationships  Between People

My blog last week struck a chord with many people either because they had experienced something very similar with the pyramids, or because they had never considered the inter-dependencies between our People, Processes, Structures and Organizations.  It’s usually the latter response that yields great opportunities for continuous improvement.

You see, we all have gaps in our daily work that come from issues between people.  Your lean initiative is working because you have an acute focus on people, their needs and your relationship with them.  Your lean initiative can also be failing because you have an acute gap in your focus on people, their needs and your relationship with them.  We are organizations filled with people.

Five Principles to Help Improve Lean Success

While these five principles are universal, they can apply to any situation where people are involved, their application to our lean efforts is much more pronounced. This is because they lead to success or failure more directly.  Most CI Leaders are individual contributors that must elicit the support from people that don’t report to them.  The better you are at “Winning Friends and Influencing People,” the more likely you’ll be succeeding at your lean journey.  This is true from senior management to the shop floor.  So, here are five lean relationship building principles to focus on:

1.  Maintain open, honest and straightforward communication

Meaning and intent are conveyed by more than just words alone.  Think of your tone of voice, expression, listening ability and apparent receptiveness to issues when looking at your success and failure rate.  If things aren’t working, talk about it.  If you need more leadership support, tell them.  If the team members need to own more of the improvement, be clear on your expectations.

 2.  Have mutual respect

Give respect, get respect.  The team members are not “beneath” you, just as the same way as your bosses shouldn’t feel “above” your efforts and needs.  Don’t allow your behavior to give people the cause to question your motives as being anything more than fair and objective.  If there isn’t a feeling of trust, there won’t be an environment of respect.

3.  Be issues-oriented and do not personalize

We must stay focused on the issues being discussed and not let our personalities get in the way of doing our jobs.  If others personalize a situation, do not get dragged in to the fray.  You must be diligent to work on the discipline to not let personal problems and preferences influence your work behavior and actions.

4.  Maintain a work environment that is absent of fear and intimidation

We must have an environment that permits the decisions of team members, management, CI leaders, and other experts to be questioned without the fear of retaliation or intimidation.  It will happen that during your journey people will question if you’re on the correct path, with the right people, and heading the “winning” direction.  Don’t pull the big hat out that you’re in charge!  You are responsible for collectively pulling the resources together to move the group toward the goal.  There is no ego in team.

5.  Understand each others roles and responsibilities

Thinking back to earlier blogs about RASIC or ARMI models, each person must know their part and how they’re contributing to the winning solution.  If anyone questions their role, quickly and clearly let them know your perspective.  If there is a disagreement, repeat steps 1 – 4 above.

Look back at your pyramid – people, processes, structure, and organization – and see how you are effectively using the five principles.   Next week, I will look at conflict in our pyramids.  Until then, “see with open eyes, and understand with an open mind.”

Four Key Elements in Your Company’s Systems Thinking Pyramid and How They Should Work Together

What’s at the Top of Your Pyramid?

A significant part of my job when I’m making product or service recommendations to customers includes effective listening.  Rather, I should say, deliberate or intentional listening.  In fact, this is one of your key leadership skills, not just for lean, but for everything we do in our companies.  Intentional listening requires asking questions that are unbiased and hearing the answers without pre-conceived filters.  So what am I listening for?

See if this scenario is familiar:

Me:       OK, team.  We are going to do a Current State map to understand what is working and not working in our process.

Jim:      I can tell you what is not working without you needing to map out anything – we have people around here that can’t follow a process if they were tethered to it.

Me:       Do they know what the standard processes are?

Sue:     Some do, but even though they aren’t following them, nothing happens because the supervisors don’t seem to care.

Me:       Do the team members all report to the same supervisor?

Jim:      Some do, but others no longer are in the same group since we re-structured the teams.

Sue:     And the guys that came from the Texas plant do things differently, even on the same machines.

Me:       So what has allowed you to make schedule every week?

Jill:       A lot of us having to cover for the slackers.  We’re getting tired of it!

Me:       Thanks for your input, this gets me excited because this mapping process will highlight the exact problems that you’re talking about.

Tying Systems Thinking into 5S Implementation

I often speak with companies that are looking to implement at 5S program.  A few things that I listen for include what has already been done, what has worked in the past, what is the system or foundation for sustaining, what is the ‘burning platform’ for everyone to jump on the program, what has changed so that success should be easier now, what standard work has been implemented, who “owns” the initiative at highest management level, etc. 

I learned from my Systems Thinking training to listen for issues around:

  • People
  • Process
  • Structure
  • Organization

Here is a picture for the way that many see these four factors in their company:

Systems Thinking Pyramid - Organization on Top

Building your pyramid so all four elements work together.

Some thoughts on this picture and how it ties back to my mock discussion above – having all four elements work together is key for systems approach.

  • Good people will find a way to get their work done, often by creating informal processes in absence of formal structures or organizations and in light of broken processes (manually done…very taxing on the people).  The workers feel like that are “carrying” the company.  Ineffective people will blame everything else.
  • Good processes will enable people to complete work, but risk creating silos of information without a structure that seamlessly integrates them together.  Good processes can be scaled-up and transferred.
  • Creating structure will make broken processes more obvious, but this doesn’t fix them, nor does it take away the need for people to be “heroes”.  This makes it easier for finger-pointing; however, it can also make for better accountability.
  • Creating an organization in the absence of good processes, clear structure and good people won’t ensure success (you’re just shuffling the chairs).  Regularly shuffling the deck doesn’t create more, or better, cards to play with.

What would happen in our companies if the pyramid looked more like this?

Systems Thinking Pyramid - People on Top

For starters, you could swap people in and out via cross-training and the company wouldn’t miss a beat.  This is because the organization supports the structure which supports the processes which support the people.  This approach is also more transferable when you want to share the best practice across multiple organizations, company sites, or business units.

Think back to the discussion the last two weeks about the Means and the End.  Why aren’t your LDM results meeting company expectations?  Is the problem with people, processes, structure, or your organization?  If you wanted to become more innovative and release new products into the marketplace faster, would you add “brighter” people, fix the NPI / NPD processes, or fix the reporting structure?  Did your recent annual re-organization achieve the improvements that were sought?  If you lost a few good people (heroes) that keep the place running, would it come to a screeching halt?  Or would the processes be so robust that you could quickly bring in a new person?

I like to listen with intentionality to where the problems lie – people, processes, structure, and / or organization.  Usually it’s a mix of all four.  Most of the time, our solutions or fixes to problems are targeted at the wrong one of the four.  Why didn’t that 5S program work last time – wrong people, no process to sustain, incorrect structure for ownership, or is it an organizational issue (culture)?  Learn to listen using the power of the pyramid.  Until next week, “see with open eyes, and understand with an open mind.”

The Lean Catchball Process and 5 Principles for Aligning Your Business Expectations

Let’s Play Catch

I was surprised by the number of requests that I received for more details on how the linkages work based off of the model I presented last week.  It seems that some people have a good understanding of some of the individual boxes, but they can see that broken links are part of their company’s problems.  This is believable based on what I’ve experienced in the field.  For a quick refresher, see the model here.

A Means to the End

I believe that the right side of the chain is totally impacted by the “goodness” of the process that created the left side.  The better the organization is at creating “good” vision + goals + targets, the more likely that the action plans + LDM will reflect progress toward the former.  I have seen many examples of paper charts on the bulletin boards that have little to nothing to do with where the company wants to be heading.  So why does this happen to us?  We need to focus on the “means to the end.”

means to an end

Remember Apple’s Visionary and How the Means were Properly Aligned?

Think of a “Wall Street darling” company like Apple.  Apple was able to churn out a seemingly endless supply of products and services while the “company visionary” was at the helm.  He ensured that the means were properly aligned to get the results in the end.  When that visionary was no longer in charge, the results didn’t meet expectations.  It is possible that both the expectations and results had shifted over time.  The same thing happens in our manufacturing environments.  When the visionary cannot keep things aligned, it seems that the boat is rudderless, and initiatives become flavors of the day, week, month or year.  The best companies in the world have made this alignment process so important that it has become an essential business process.  There is a reason why innovative companies continue to innovate.  There is a reason that the best “execution” companies continue to execute.  There is a reason that struggling companies continue to struggle.

When the alignment process is done properly, you find:

  • Top management vision can be translated into a set of coherent, consistent, understandable and attainable policies and actions,
  • Which can be applied at all levels of the organization and in all functions,
  • Where they result in the vision becoming reality, with each person knowing their part,
  • Allowing progress to be measured efficiently and effectively using visual controls and visual management

You can boil the alignment process down to five principles:

  • Translate the strategy to operational terms
  • Align the organization to the strategy
  • Make strategy everyone’s job
  • Make strategy a continual process
  • Mobilize change through executive leadership

The benefits of this goal alignment include:

  • Ensuring that insight and vision are not forgotten or ignored when the planning activities are over
  • Guarantying that planning documents, once finalized, are kept alive and acted on daily
  • Preventing daily fire-fights, unplanned ‘strategic’ meetings and financial pressures from refocusing
  • Managing and determining short-term activities by the plans themselves
  • Ensuring that what is done each day reflects the targets, intentions, and the agree-to vision of the company

So how does this tie-in to the lean Catchball process?

In the Toyota world of lean there is a concept called “Catchball.”  The metaphor that is created is that the top management throws the ball (strategy) to the next level down.  They, in turn, decompose the ball (strategy) in to terms that are applicable to that level, and the process continues down to the lowest levels in the organization.  Agreements are made as a result of the catchball process, so that a lower level is not “saddled” with a target that they did not agree to.  The beauty of such a method is that even stretch goals are fully understood and “owned”.  If a goal is too aggressive, it is modified during the catch ball process.  Here is a quick overview of the catch ball method:

  1. The decomposition is done through a process of “catchball,” where the upper level is handed down to a lower level unit, the lower level unit evaluates which piece of the mission applies to the unit and derives its own.
    Down Arrow
  2. This process is iterative until the upper and lower level units agree in the decomposition of the mission.
    Down Arrow
  3. Next, what was the lower level unit now becomes the upper level unit and the process begins with the next lower level unit.
    Down Arrow
  4. This process continues until the entire organization has decomposed the top level mission statement.

What do you think?  I will spend a little extra time on this alignment process, since it is so important to our jobs and companies.  Until next week, “see with open eyes, and understand with an open mind.”

Lean Implementation and Common Issues

Puzzle Pieces for Implementing Lean

I was having a discussion with some lean practitioners a few weeks ago at a training session.  We were covering the same ground that I think most CI leaders cover – “what is working and why,” “what is not working and why,” and “what are the root causes for the gaps (both positive and negative).”  I was reminded of a slide that I use at most of my lean events and trainings that captures the “issues” that “most” CI practitioners have encountered.  I usually tell them that if they haven’t lived through any of these issues yet, to be prepared, because they likely will.

 Listing out Common Lean Implementation Issues

So what is this “universal list” of issues you might ask?  In my sessions I poll the audience for their biggest CI challenges and proceed to write them on the whiteboard.  It doesn’t take long to get a pretty long list of issues from the group.  I then introduce my slide with my findings and compare results.  Invariably, they overlap almost entirely:

  • Lack of leadership buy-in
  • Lack of team member buy-in
  • Lack of resources (time, $$, people)
  • Changing priorities / goals / focus
  • Lack of alignment across functions
  • Sustaining the gains

When I do Change Management training, there is a model that I feel is particularly useful when it comes to understanding why most CI leaders have lived at least some of the issues on the list.  It is a logical chain for implementing successful change initiatives, and if any of the factors is missing, the entire chain can break.  Here is the model:

chain for implementing successful change initiatives

Vision, Goals, Targets

It all starts with the organization, management, leaders, and team having a big vision for all the work that is done.  Along with this strategic vision, there must be tactical SMART goals and targets to evaluate progress toward that vision.  A powerful tool for aligning these elements is Strategy / Policy Deployment.  When this factor is missing there is a definite and observable “confusion” within the organization, complete with finger pointing, a lack of accountability, and usually “flavors of the day”.

Commitment and Buy-In

Think of this along the entire continuum of people in the company from the top to the bottom.  You can have a vision statement printed on a banner in your lobby, but if everyone snickers when they read it, there is little buy-in.  If your boss says your lean initiative is the most important, but doesn’t mention it in review meetings, there is little commitment.  The lack of these, which we have ALL experienced, leads to unwillingness of people to take risks.

Skills and Experience

Many CI leaders lack confidence if they don’t think they have the skills necessary to push an initiative.  A non-mechanical CI leader pushing a TPM program might feel inadequate.  Conversely, someone with an impeccable background of working for a name-brand lean company or consulting group can lose a team quickly if they cannot connect.  The lack of skills and experience will lead to anxiety for the CI leaders, management and team members.

Means and Resources

Do you have enough people to help you?  Do you have a budget to purchase supplies to support your lean program?  Are you giving the amount of time needed to execute your plans or are you constantly running a time deficit?  When you lack resources you become very frustrated.

Action Plan and Lean Daily Management (LDM)

The last factor is the creation of an Action Plan and a way to manage it (via Lean Daily Management).  The project management creed of “plan the work and then work the plan” is key only if you’ve created a plan.  If you just conduct events that aren’t connected to each other, an overall annual or monthly plan, or to the vision and goals of the company, you are guaranteed to head down a path that might be hard to get back on to.  And once you do, you might find that your people have bailed from the team.

What do you think?  This topic ties into my blog post a few weeks ago about resolutions for the New Year.  Look for you “chinks” in the chain where you could have a link fail.  Remember, your initiative is only as strong as the weakest link in the chain.  Until next week, “see with open eyes, and understand with an open mind.”

Want more on 5S?  Click here to download a 5S handbook.

 

Visual Machine: 5S and TPM Best Practices Images

The Visual Machine Best Practices Image Gallery

I hope that the preceding weeks have been valuable for you in striving for a Visual Machine.  The checklists were meant to help you identify gaps in your various systems and components.  A machine that is working as designed, without any of the Six Big Losses, is a machine that is making you money.  A Visual Machine is one that can sustain without extensive time wasted intervening when necessary.  Remember, our most widely used Lean Tools – 5S and TPM – both require standards in order to sustain.

It is said that, “a picture is worth 1,000 words,” so my intention with the blog this week is to present photos of best practices that I’ve encountered while working across dozens of plants.  Some of these examples have been provided to Brady by various partners that we’ve been fortunate to work with, while others are ones you’d find in Brady plants.  I categorized the photos to align better with the checklists.  Remember, these are a starting point.  You might have better examples.  The point is that we are constantly striving to improve our visuals and make our facilities the best they can be.  Join me next week for a new topic.  Until then, “see with open eyes, and understand with an open mind.”

The Visual Machine Best Practices

Visual Machine Best Practices

Visual Support Equipment Best Practices

Visual Support Equipment Best Practices

Visual Machine Guarding Best Practices

Visual Machine Guarding Best Practices

Visual Machine Process Best Practices

Visual Machine Process Best Practices

Visual Machine Gauge / Dial Best Practices

Visual Machine Gauge - Dial Best Practices

Visual Machine Maintenance Best Practices

Visual Machine Maintenance Best Practices

Visual Machine Testing Best Practices

Visual Machine Testing Best Practices

Want more on 5S?  Click here to download a 5S handbook.

 

Visual Machine: Maintaining Your Facility Electrical System – Checklist

Let’s Make Contact

If you’ve been following this blog, you know that over the last several weeks I have been providing checklists that can help you identify areas to assess your Visual Machines.  I bet that many of you have determined that there is a long way to go before your equipment is visual.  That’s OK because now you have something to shoot for in your improvement efforts.  After this week, I will focus on sustainable visual solutions to many of the areas identified on the checklists.

Finding and diagnosing electrical system problems

Alas, we’ve come to the last checklist and area to assess, and I would argue the most important – the electrical system.  Much in the same way your body only works because small electrical impulses tell your organs what to do, the electrical systems within your facility provide the EMF to move things.  You probably have very few non-electrical machines in your factory.  It is fitting then that the last area we look is for issues that stop those little electrons from flowing around and doing their job.

A challenge with electrical systems is that issues can be very hard to detect in real time.  You might suspect there is a problem and bring a DVM to measure voltages, currents or outputs, but these can be reactive activities.  Ever have an electrical problem in your car?  You know how hard it can be to properly diagnose and fix “floating” electrical issues.  Unlike our mechanical systems that can project the state of their health through sensorial means (sight, sound, smell, touch), the electrical components can be degrading without you discovering a growing failure. The big safety issue with electrical systems has to do again with the fact that many of the dangerous situations are not always evident (arc flash).

I have divided the facility maintenance electrical checklist for this week into “components and control” and “operating panels.”  Between these two, you will be able to find almost all the problems that can arise electrically.

Components include:

  • switches
  • motors
  • heaters

Control and operating panels, along with relay boxes, can have:

  • missing information / data like operating voltages, amps, watts
  • emergency measures like e-stops
  • incomplete or incorrect labeling between panels and equipment
  • accessibility to wiring diagrams and schematics
  • issues with the integrity of boxes and panels.

Finally, the checklist includes wiring issues such:

  • missing information / data like operating voltages, amps, watts
  • emergency measures like e-stops
  • incomplete or incorrect labeling between panels and equipment

Remember that electrical systems are key to making your plant move, so don’t overlook the care and feeding of them, even though they aren’t as obvious.  Next week we will start to investigate visual countermeasures for many of the issues that have been highlighted on the checklist.  If you print all the checklists out and create an audit book, you will be well prepared.  In this fashion, we’ll be creating the Visual Machine!  Until next week, “see with open eyes, and understand with an open mind.”

 

The Visual Machine: Health of Mechanical Drive Systems

Parts that Drive Our Processes

Welcome to 2014.  My blog from last week about Change Management sure was a hit – at least from the perspective of people wanting additional information on best practices for managing people around CI efforts.  I believe getting the most out of people is a universal challenge no matter what the initiative or level in the organization.  So, with that in mind, I will start the People / Change Management topic in February.  Until then, back to our Visual Machines.

In both process industries and manufacturing environments you will find that material conveying is a key part of moving product around the factory.  We often will couple in-situ inspection or marking automation directly onto these conveyors to collect data in real time or mark product as it is produced.  Since this section of our plant is the last part before product is shipped out the door, we should pay particular attention to ensure that all the equipment works as expected here.

Mechanical Drive Systems

This week I have a Mechanical Drive Systems Checklist that you can download.  When we look at making these systems more visual we will find a mixed bag of challenges – parts of the components are easy to see and inspect while other parts are enclosed and we can’t always view the “health” of the components.  Don’t be misled that these enclosed components aren’t susceptible to contamination.

Areas of the mechanical drives that you should pay attention to are:

  • Belts (V, flat, woven)
  • Gears, speed reducers and brakes
  • Shafts, bearings, keys and couplings
  • Roller chains
  • Conveyors

Mechanical Drive System Examples

Remember that mechanical drives are key to your overall material movement, so don’t overlook the care and feeding of them.  Next week I’ll look at electrical systems, and then present visual countermeasures for many of the issues that have been highlighted.  In this fashion, we’ll be creating the Visual Machine!  Until next week, “see with open eyes, and understand with an open mind.”

Click here to download the Visual Machine Preventive Maintenance eBook!

Motion Sickness

Addressing Wasted Motion

            D          =          Defects

            O          =          Over-production

            W         =          Waiting

            N          =          Not engaging all employees

            T          =          Transportation

            I           =          Inventory

            M         =          Motion

            E          =          Extra-processing

Ever have a job that when you get home exhausted you feel like you’ve walked several miles?  Well, you probably did!  The next waste, Motion, is very insidious and can be responsible for ergonomic as well as physical fatigue.  Yet, we build motion into our daily routines that unless you stop to really investigate how much you are moving, you won’t know the real amount of hidden waste.

Why is Motion Bad?

Couldn’t this be a new company initiative or program to get the people up and around?  Isn’t that a good thing?  Yes and no.  When we are moving about, we are not doing what is optimal, effective or most efficient.  When we have to scavenge around we can cause Waiting for others, changes with Transportation, or Defects in products.  Plus, the probability of having a safety issue increases as our team members move about the facility.

One of the best tools in your lean arsenal to identify and address the waste of Motion is a spaghetti diagram.  The graphic below is a mock version of a work cell (colored equipment), inventory or materials storage area (grey) and a support department (black).  In this situation, we’ve methodologically watched and tracked every step a target person has taken over a period of time.  The motion between machines is not as much of a concern as leaving the work cell and going into the facility.  It is this motion that should be address with reduction ideas.  I did an event once that proved a given team member walked over 4.5 miles in a single shift.  We were surprised, but not nearly as much as the operator was.  Yet, all of those movements had some explanation or rationale to justify why they needed to get about.

Lean Motion Spaghetti Diagram

Lean Motion Spaghetti Diagram

11 ways to best address the waste of motion

  1. Identify the target areas to evaluate – don’t be surprised if your scope changes
  2. Identify the team members that you want to study
  3. Notify the team members of the activity so that they demonstrate the current process and don’t change the routine (this changes the activities which alter the motion)
  4. Remember that you want to understand exactly how a given activity is being done every day.  If the team members must go to a supply room only on Mondays, be sure not to suggest that they go there as part of the normal daily activity
  5. Follow the person around.  Quantify the motion (usually we use the number of steps taken).  This is tedious, but necessary
  6. Create the spaghetti diagram
  7. Talk about the activities in the diagram to understand areas for improvement
  8. NOW, step over to your 5S tool strategy and use Step #2 – “Set in Order”.  Ideas for reducing the motion will probably be best addressed by using that technique (see previous blog).  Create scale drawings (CAD or other) and use scaled cut-outs (paper dolls) to create the future state.  Remember to look at all of the set in order categories (supplies, tools, fixtures, materials, etc)
  9. Get agreement on the future state and make necessary changes
  10. Evaluate the activities with the new layout and quantify the benefit of the changes.  You will probably have a metric like the decrease in the number of steps taken. You can convert this to a distance (feet or miles).  You’ll be amazed at the reduction in distance walked
  11. Repeat the same type of strategy WITHIN the work cell.  This is where you might find subtle ergonomic issues that need to be corrected
Future State Planning - Lean Motion

Future State Planning – Lean Motion

The better we get at viewing motion as a waste, the more engaged our work forces become.  I would like to hear how you use spaghetti diagrams.  Drop me a line and I will share best practices.  Until next week, “see with open eyes, and understand with an open mind.”

Learn more about the additional visual workplace training Brady can provide.

Extra processing waste: “I will send you that in triplicate”

Extra processing Waste

            D          =          Defects

            O          =          Over-production

            W         =          Waiting

            N          =          Not engaging all employees

            T          =          Transportation

            I           =          Inventory

            M         =          Motion

            E         =          Extra-processing

Many of you probably don’t remember the carbon-paper days for documents.  With all of these electrons flowing around, who needs paper anyway?  It wasn’t that long ago that many important forms came in a stack of bound colored copies that went to various departments.  The scenario could be something like: you sign the top white copy and keep it for yourself; send the pink copy to HR; the yellow copy to purchasing; and the green copy to the admin for filing.  Does this ring true with anyone?  How archaic of us!  Now we just email details to each of those departments.

 Wasted processing is still built in to our procedures

While triplicate, carbon-copy documentation, might sound just this side of the Stone Age, we still have remnants of this approach spread all over our companies.

  • We have work orders in multiple copies for our maintenance team.
  • Our SAP or Oracle output might spit out three copies of an order, when we really don’t even need a hardcopy.
  • Our New Product Development process might have approvers reviewing, commenting and signing the same document many times.
  • Our Change Management process (ECN, ECO, etc.) might make us have multiple spreadsheets, databases, whiteboards, and cover pages that each needs to be managed.

Additionally, we might have production lines where we inspect a component, send it along to the next step, add something and recheck the entire part, send it along, put a label on it and re-inspect the whole part, pass it along, and do a final inspection at packaging.

If we didn’t fundamentally change the component, why all inspection?  I realize that many instances require this, but the last waste, extra (over) processing gets built into our processes and are hard to remove.

Makigami (swim-lane) process map

A great lean tool to identify this waste is the Makigami (swim-lane) process map.  This is nothing new.  It is just a standard process map on steroids because it shows who is doing each step.  An example is below:

Process Map Chart

Even though you can’t read this, you can see that 10 different people or departments are involved in the process.  From this portion of the process, you can determine that the green and blue people are responsible for much of the activity.  There is little interaction with other departments.  Here’s an actual photo:

Process Map Photo

You can find the waste of extra-processing when you see lot’s of hand-offs between lanes, especially if they seem to go back and forth.  We also might find that a person does just a single activity that can be incorporated into someone else’s standard work (like the blue activity in the photo that gates the rest of the process).  This is an extremely powerful tool.  I use this in conjunction with a Value Stream Map (VSM) when you need a level of detail below just “black boxes.”

The cost of documentation management

Remember every piece of paper that we generate needs to be managed.  Several years ago the lean practitioners estimated that we spend $75 dollars managing the life of a piece of documentation.  That is substantially higher in many industries.  In fact it’s probably in the hundreds of dollars.  So this waste impacts our costs in the same way inventory might, it’s just a little harder to see unless you do a Makigami mapping exercise.

If you’d like more information on this technique, please comment or send me a message.  Until next week, “see with open eyes, and understand with an open mind.”

Here is additional resources that you may be interested in for lean management and communication.

Lean Waste Examples in any Job Function

“Waste Not, Want Not”

Not totally sure what that age-old saying means exactly, but I think it could mean that when things are near “perfect,” you don’t need anything else.  This applies to everything that we do in life, and especially to our jobs and companies.  However, the great lean thinkers have always challenged us to Continuously Improve (Kaizen), as there is always a better way.

Inefficiencies across job function

I had some great comments from the “8 Wastes – DOWNTIME” series regarding how these forms of inefficiencies apply to various functions.  Some comments followed the pattern, “Rick, I see how Inventory applies to our products, but I’m in Customer Service, so that doesn’t apply to me, right?”

Wrong.

When you begin to “see” the wastes in our processes, then you begin to realize all eight wastes apply to every nook and cranny of our business.

Lean Waste Examples Across Job Function

DOWNTIME principles can affect any job function.

Junk attracts more junk

When I teach people about flow, I usually explain the concept using a river as the metaphor.  Where do you find the old tires, empty bottles, drift wood, plastic bags and other junk in a river?  This waste collects in the slower areas (eddies), and once there, tends to “attract” more junk to the area.  The high flow areas sweep the waste downstream.

So, too, does this happen in our processes.  Only the “eddies” are the areas where stuff accumulates like in-boxes, desks, email boxes, the shipping dock, lab testing, NPI gate reviews … you get the picture.

Let’s look at some examples of the wastes that could apply to various functions:

Engineering / R&D – defects in approval processes; over testing products with non-optimal test methodologies (DOE); waiting for marketing to supply the updated customer design requirements; not using the technicians for new ideas; moving samples around with the increasing risk of damaging or altering them; test data that accumulates without getting analyzed in a timely fashion; having to travel to manufacturing sites to collect data.

HR – accumulating resumes looking for the perfect candidate; moving “highly sought after” candidates to on-site interviews or offers, only to find that they really did not understand the role and now are not interested; under-evaluating candidates only to hire someone that isn’t a fit and is let go after a few months; performance management processes that have no feedback or actions given to employees after they spend lots of time filling in their accomplishments to goals and objectives; rolling out HR management systems that don’t connect to other vital business systems.

Operations – lag time between communications to customers; sending drawings to other departments that get lost; waiting for answers to customer questions regarding material usage or fit to specifications; long wait times on phone systems; getting quotes incorrect; and others.

Quality – burdensome quality management systems that no one reviews after the three-ring binder is complete; ineffective root cause analyses; moving product around to hold areas; having to create product notifications; over-testing components; not interacting with lean practitioners when they are making changes to the manufacturing process; too many or not enough audits.

Marketing – creating the greatest product based on incomplete customer VOC that doesn’t sell; generating electronic files that cannot be used later; ineffective interaction in the NPI/NPD process; waiting for test results; attending trade shows with little return on investment.

Sales – requiring quotes for low probability sales; identifying opportunities without qualifying them and creating excess activity in Customer Service; writing monthly sales reports; traveling to under-qualified customer meetings.

Don’t get me wrong, some of the above activities are needed.  My point is to highlight that every function in a company has wasteful processes that accumulate waste over time.  Armed with this fact, we will flow nicely into my topic for next week which is “seeing the process” using mapping techniques.

Thanks for the questions about the “8 Wastes” series.  Stay tuned, this lean tool will apply to every person in every role in every company.

Until next week, “see with open eyes, and understand with an open mind.”

Process Map: Examples to visualize where work is done

“Go to the Gemba”

This directive is a very fundamental and foundational aspect of Lean.  “Gemba” is a Japanese term that loosely means “where the work is done.”  So telling someone to go to the Gemba is literally encouraging them to get off of their … I mean … out of the conference room and check things out.  This is more practical in some cases than others.

For example, a quality problem that is happening on the floor is best understood by:

  • Looking at the equipment
  • Evaluating the materials
  • Reviewing what the operators are actually doing
  • Checking on the standard work
  • Verifying inspections
  • Watching the overall flow

You can’t do this in a conference room or by looking at presentations.  What do you do when the work takes place in the virtual world?  For example, determining why quotations take so long to get out to a customer.  You might be able to physically sit near the person and observe, but most of the process is happening in computer systems, software and applications.  It is very hard to be in the Gemba in that case.

Visualizing Where Work is Done

What we need is a visual way to view the process, no matter whether we’re on the shop floor, or we are looking at transactional processes.  Shown below are typical approaches that have been used.  The first example is the garden-variety Process Map.  You see major steps and decision points, but what is missing is a time sequence that allows us to understand the logical order of those steps in time and an assignment of who is responsible for a given step or decision.

Process Map Example

Process Map

The next example is a Value Stream Map (VSM) which is typically at a very high level.  You still need to interrogate the process to see both the time sequence and who is responsible for a step.

Value Stream Map - VSM Example

Value Stream Map Example

Enter the Makigami Process Map.  You might know these as Swim-Lane Diagrams.  Here is a concise example.  These can encompass the entire wall of a large conference room.

Makigami Process Map Example

Makigami Process Map Example

A map like this covers all of the strengths of a basic process map, but brings a level of detail and clarity that isn’t represented in a VSM.  Also you can combine these with other tools, like a SIPOC, to give a great level of detail that usually is never visualized.

Check in next week when I will give you the step-by-step details of how to construct one of these.  Until then, “see with open eyes, and understand with an open mind.”

Makigami Process Mapping

“Maki- what???”

Last week I briefly discussed some of the various mapping techniques that you MUST have in your lean box of tricks.  This week I will start explaining Makigami process mapping.

Basic process mapping only gets you so far, but it’s still better than just guessing how a process works.  The value stream map (VSM) is the main-stay for lean practitioners, however, too many times I find that the finished map just occupies space on a wall. It rarely gets looked at after the newspaper is published at the end of the event.  I want to go in to a different map – the Makigami – which you’ll find is invaluable when you need to map out what’s happening in the Gemba.

Think about the very rudimentary questioning approach you learned early in grade school:  who, what, when, where. It is very useful in describing a situation.  You know, like Colonel Mustard, in the Library, with the candlestick.  We will leave “why” for a later discussion.  I will outline the entire process for doing Makigami process mapping in the next few blogs.

Makigami, literally meaning “a roll of paper” in Japanese, is very powerful for both transactional processes and for finding those nasty details between the boxes on your VSM.  It’s the who, what and when of your process.  A basic process map typically just covers the “what” with the “who” stuck inside the action step box.  Let’s take a closer look at the map that I showed last week:

Makigami Process Map Example

Makigami Process Map Example

The red circle describes “who” is involved in the process.  The blue circle shows “what” tasks are getting accomplished by that person.  The green arrow signifies the logical order, or the “when” that each task takes place.  Something to the left is upstream from a task that is further right.  In the bottom section, you will also keep track of “how long.”  This gives great insight in to process cycle time (PCT), process lead time (PLT), waste between steps / value added time, and overall time required (more on that later).

 

Step 1.  Makigami Process Mapping

  1. Post the empty Makigami roll on the wall (basic 36” wide paper, or pre-printed)
  2. Identify the departments or functions involved (Shipping, Order Entry, Master Data, Scheduling) and these will become the swim lanes
  3. Identify all the steps performed, actions taken, or tasks done
  4. Do step three by “questioning” or “investigating” the process.  Think as a police investigator interrogating witnesses.  This step is best accomplished by having everyone involved in the process (all shifts, up and down stream people, temporary workers, etc).The more rigorous this step is done, the more accurate your outcome will be.  You really need to put on your best facilitator cap to do this and you’ll get better with practice.  Remember, you’re never asking “why” something is done.  Your job right now is to get EVERYTHING that is done down on paper.You put the tasks into the correct swim lanes.  When a task is identified, write it down, and ask, “and then what happens?”
  5. Identify the output for every step or action as a separate piece of paper.  You can keep track of how long a given step takes (more detail on this later).

It is important to keep track of process boundaries or “book-ends”.  By keeping aware of this, you reduce the likelihood of scope-creep.  To manage the boundaries, ask the following questions:

  • What starts this process?
  • What ends this process?
  • What does this process produce?
  • Who is the customer?
  • Who is the supplier?
  • How is this process measured?

At this point, you are only concerned with understanding all the tasks between your bookends.  For example, the process starts when the Quoting department receives a fax, and ends when the order is sent to Scheduling.  You job is to uncover everything that happens between those two time stamps.

Next week, I’ll give you a practical example of Makigami process mapping that I use in my training.  It simulates what happens in a restaurant.  I’m getting hungry just thinking about it.  So practice saying “Makigami” and get ready for a new best friend.

Until next week, “see with open eyes, and understand with an open mind.”

Steps for Swimlane Mapping

“Stay in Your Lane”

It is time to dive a little deeper into process mapping.  This week I will talk about some of the steps included for process mapping in swimlanes.  But before we go too much further …

Let’s start with a quick test.  What does Makigami mean?  On a Makigami map, what do you put on the left hand side?  What is each row on the map mean, and what is it called?  Where do you put the tasks?  Why should you use such a map and what are the benefits?  When should you use a Makigami map?  OK.  If you couldn’t answer seven or more, go read last week’s blog.  I’ll wait.

Welcome to this week.  I thought I’d use a situation that most people would understand for our standard.  Who has never been to a restaurant?  If you’ve never been to one, hopefully this scenario is easy to follow.  Otherwise, let’s look at the necessary steps of the mapping process:

Step 1 – Identify the Departments, people, functions (desks) involvedSwimlane Mapping Function and Department

 

  • You (the Customer)
  • Host / Greeter
  • Server / Waiter
  • Cook / Chef
  • Cashier
  • Bartender

Step 2 – Discover the tasks / activities done (in order of completion or start)

  • Walk in
  • Greet Customer
  • Take Customer to table
  • Give Customer Menus
  • Tell Customer, “Your server will be with you shortly”
  • Greet Customer, “Hi, my name is..”
  • Ask for drink order
  • Review wine list
  • Decide on drinks
  • Confirm drink order

 

Swimlane map example with tasks

Swimlane map example with tasks.

At this point, our process starts at the point that you walk into the restaurant.  If you wanted to expand the overall process to include the valet parking, you would do so.  It is very important that you understand clearly where the process starts and ends (the bookends).  This will help with ensuring that you have a defined scope.

 “What happens next?”  Good Question!  Make sure you ask it, a lot.  

You continue “interrogating” the process by asking, “what happens next?”  If there is a decision point in the map, make sure that you place the responsibility for the decision in the correct lane.  Keep mapping until you hit the bookend.  If a “new” department, function, or person is uncovered to be part of the process, create a new swimlane for it.  It is very important that you capture exactly what is currently happening in the process, not what we think should happen or guessing at what happens.

Do this with as broad a range of participants as possible – all 3 shifts, new and old employees, the same functions at different sites – and you might need to be sensitive to whether you do individual discussions or a group setting.  Sometimes, people say different things depending on the setting.

When you complete the map, go over the entire process step by step, to ensure that no steps are missing.  If variation is identified, make sure you capture all the different ways people are doing their work.

If you have questions at this point, drop me a line.  I will continue next week with showing how to keep track of “metrics / measurements” to gauge the value added components.  Until next week, “see with open eyes, and understand with an open mind.”

 

Makigami Map Essentials

Fine Tuning your Makigami Map

As you complete the map and do the “process walk,” it will be important to quantify as much of the process as possible.  When you get good at facilitating a team through a Makigami mapping exercise, it’s possible to do this at the same time as the swim lane discussion.

Makigami Map Vocabulary

There are some common terms to ensure that everyone in the team understands what the definitions mean.  These will show up as opportunities for improvement as you look to the future state.  Some things to track are:

  • Process cycle time – this is the time that is required to finish the task in a single box
  • Lead time – the time required for a single item to pass through all the process steps
  • Value added time – a process step that adds value (something the customer “pays” for)
  • Non-value added time – a process step that does not add value
  • Non-value added but necessary time – a process step that must be done but doesn’t add value
  • Handoff – when a process “jumps” lanes with a tangible item like a document or approval
  • Transfer – when the process stays within a given lane with a tangible item
  • Error – when a process step does not happen the first time (First Pass Yield, Right First Time)
  • Value added / Non-value added ratio – the percentage of time that adds value

Key Metrics

Typical metrics that can be used to quantify improvements in the process could include:

  • Cycle time reduction
  • Reduction in handoffs
  • Reduction in overall lead time
  • Reduction in errors
  • Reduction in distance traveled
  • Improvement in value added / non-value added ratio
  • Wait times between steps
  • Reductions in any of the eight wastes
  • Creation of standard work
  • Efficiency improvements by combining steps / functions

Color-coding Step Relationships

Visually you can show the relationship between steps with colored arrows: (1) green for error-free transfer between steps and (2) red for tasks that are subject to errors, are not clear, or have significant variability.  You can use dots on the sheets to indicate whether the step is value added or not: (1) green dot for value added step, (2) red dot for non value added step, and (3) blue dot for non value added, but necessary step.

Best Practices

Some best practices to use during the mapping exercise include:

  • Use “typical” process cycle times when accurate information is not available
  • If the process owners can’t agree a typical time, use min / max or median time
  • During the creation of a Makigami map discussion on how the process actually flows can occur. Check with process owners (“on call”) to get accurate information … Don’t guess and be incorrect as this will transfer to “To Be” state
  • Issues that need improvement, further investigation, or are relevant but outside the “scope” of the current event will surface.  Use a parking list for these items to avoid side discussions
  • All participants should use the 5 Why process to ensure clarity

Next week I will take you from the current state (“As Is”) to the future state (“To Be”).  We will go over how to use the map to visualize the “8 Wastes,” find opportunities for improvement, determine how to prioritize the list of potential improvements using a “4 Block,” and finally visualizing the new way of doing things.  I know, pretty exciting stuff.

Until then, “see with open eyes, and understand with an open mind.”

The Visual Machine – Safety Visuals & Preventative Maintenance

“Machine Language…Not What You Think”

I know some people that understand how to use machine language – the set of instructions executed directly by a computer’s central processing unit to get the equipment to perform a task.  With this primitive format it is nearly impossible to directly hold a conversation with a piece of hardware without some higher-level language conversion.  Imagine a world if machine language was more along these lines:

  • “Hey Rick, the oil filter is getting blinded off by the particles in the oil and the pressure is rising … “
  • “Hey Rick, if you check my blower you’ll find its getting hotter than usual…not sure why … “
  • “Hey Rick, I probably should tell you that you might lose a finger when you grab that part … “
  • “Hey Rick, a few guys were messing in the transformer without proper arc flash PPE … “
  • “Hey Rick, the drive belt is getting a little too much slack in it and needs to be replaced … “
  • “Hey Rick, you keep looking for the reason I’m producing so much scrap, check the centerline … “

You get the picture.  If machines would converse with us directly, life in the manufacturing world would be so much easier.  Kind of like the ultimate Predictive and Preventative Maintenance program.  But alas, the world isn’t there.  Yet.

The goals for having a factory full of Visual Machines are to: improve safety, increase quality, meet delivery requirement, reduce costs, and ultimately, make money for the company.

The costs are very high when our maintenance strategy is “run to failure” and we wait to fix the equipment after it has gone down.  The money spent on preventative or predictive maintenance might be high initially, but will more than pay for itself in the long run.  Additionally, we spend hundreds of millions of dollars a week collectively on safety related issues like injuries, disability, and workers compensation.  Pick your reason from the list above, any one of them will compel you make your equipment a Visual Machine.

Making a Visual Machine

The steps you need to take towards making Visual Machines are as follows:

  1. Assess the equipment – component level, system level, facility level – for common hazards (use the checklist from last week).
  2. Identify those common hazards that apply to the situation and the points where they exist
  3. Determine the level of risk associated with the hazards (you can use something like a process FMEA [Failure Mode and Effects Analysis] to score each one)
  4. Evaluate the requirements for the visual information – location, size, language, format (materials like sign, label, placard, LED display), regulations that apply – to create the most impactful means to convey
  5. Create visual and get input and / approval from others as needed
  6. Implement

If you did not download the checklist from last week, you can find it here Pick a location in your facility to evaluate.  Run through the six step process above.  Use all your senses to develop a comprehensive list.  Do a reflection on the process to see what you’ve learned.  Get others in your facility, from various functions to participate, especially in the risk evaluation.  Re-assess the area to see if your equipment is talking to you yet.  If not, repeat steps 4 – 6.  Bring in an outsider to see if they can visually “hear” the equipment.

Next week we’ll start looking at best practices and what happens if you choose to ignore your precious assets.  Until then, “see with open eyes, and understand with an open mind.”

For more on maintenance procedure products checkout BradyID.com.

The Visual Machine [Infographic]

What is a visual machine? It is equipment that speaks directly to the people that use it. It is intuitive and easy-to-understand. It is well maintained and reliable. A visual machine identifies key maintenance and safety instructions at a glance without confusion. Take a look at the infographic below to see what a visual machine can do for you.

The Visual Machine

Click here for more Visual Machine Resources from Brady

 

The Visual Machine – Equipment Assessment & Lubrication [CHECKLIST]

The Visual Machine Basics – Equipment Lubrication & Assessment

I am excited by the amount of interest I’ve been getting around this topic.  In fact, a few machines sent emails to me to thank me for bringing up this much needed topic.  According to data collected in 2011, there were just under three million on-the-job illnesses and injuries.  That number is probably understated because many situations never make it to the attention of someone in our company that is keeping track.  In many of our workplaces, the type of product we produce and the processes required to do so, inherently have safety risk.  It is our job to reduce that number by having effective risk management programs.

The intent of this Visual Machine series is to highlight the lean practices and visuals that can be implemented on your equipment to improve workplace safety, maintenance and efficiency.  Last week, I introduced the six step process that can move you toward creating Visual Machines.

For the next few blogs, I will cover the first two steps:

  1. Assess the equipment – component level, system level, facility level – for common hazards
  2. Identify those common hazards that apply to the situation and the points where they exist

 

Visual Machine Steps

Equipment Assessment:  Lubrication

There are several areas for you to assess – lubrication, pneumatics, mechanical systems, electrical systems, mechanical drives, fasteners, tooling and cleaning.  The first area I will focus on is lubrication and you can find a checklist for lubrication here:

Equipment Lubrication Checklist

You should systematically inspect the lubrication elements of the equipment using the checklist provided.  An abnormal condition is defined as any condition within, or around the machine, that affects the appearance and performance of the machine or production cell.

Main Causes of Equipment Failure

Try to determine:

  • Why did the abnormal state happen?
  • What other problems could this have caused?
  • How can this be prevented from happening again?

A normal condition is defined as a condition in which the machine’s appearance and performance is in like new condition and no waste is generated in downtime, resources, or materials (or the Six Big Losses).

Once you’ve used the checklist from this week, start on step #2 and identify hazards that exist with the lubrication system.  Use the checklist from two weeks ago to see which might be applicable.  The reason for this step is to determine not only those risks that are safety related, should they fail for operators; but also the risks that are related to the Six Big Losses should they fail for equipment uptime Next week, I will focus on the drive systems.

Until then, “see with open eyes, and understand with an open mind.”

Click here to find additional Visual Machine lean resources.

 

Visual Machine: Lubrication Systems Planning and Mapping

Visual Machine Basics 2 – Lubrication System Planning and Mapping

I thought that I’d add a real example to the point I made last week about deliberate lubrication planning.  You see, since lubrication is such a key part of equipment maintenance, it pays to have a solid plan for how you’ll approach this in your facility.  The checklist from last week provided a comprehensive list of items that are important for lubrication planning.  A pared-down list is worth highlighting if you can only focus on the vital few:

  • Proper functioning of all auto-lube or centralized lubricating systems
  • Proper functioning of all systems manual lubricators (injectors, drip oilers, contact lubricators)
  • Proper lubrication at each required point – type, frequency and amount
  • Leaks or contamination in the lubricating systems
  • Ease of use and observation of all oil level sight gauges
  • Proper lubricant level that is not excessive, lacking or incorrect type

Some equipment comes from the manufacturer with predetermined lubrication and maintenance points.  Look at the example below from a machining center.  There are many instructive elements of this placard.

Lubrication Map

Click to enlarge.

 

Lubrication planning and frequency

First, the lubrication period is based on an eight hour day.  If you’re not operating on this schedule, you’ll have to adjust the amounts and frequencies (part of your lubrication plan).  Also, this manufacturer gives you a choice of three oils to use in the hydraulic power unit (Esso, Mobil and Shell), as well as three oils to use in the feed screw and slide mechanism.  If you think that you need this flexibility with having three separate oils, you might consider selecting just one.  The reasons are not just cost justified, but it provides a more robust lubrication plan.

If you look at the “Remarks” section, you are to change the oil every six months on the hydraulic pump.  This is a time-based frequency, similar to you changing oil in your car.  You’d be much better off by having a performance based approach like measuring viscosity, contamination levels, thermal properties, or some other predictive factor.  It is hard to know precisely how hard the equipment ran in those six months.  How could we make this lubrication plan more visual?  I like to add color.

Take a look at the same plan with the added color.  I assume that we selected which oil we will use on a regular basis.  Also, I tried to show where the fluids are added.

Color-Coded Lubrication Map

Click to enlarge.

Color-code containers and pair it with your lubrication map.

Your lubrication plan would be complete if you labeled the equipment with the same color scheme at the identified points.  Then, as I’ve previously recommended, your oil containers would have the same color coding all the way back to the 55 gallon drums.  Do you have a lubrication plan like this on your equipment?  Why not?  You can quickly make one by just snapping some pictures of the actual equipment and highlighting your points like those above.  To complete your plan, you would combine all of the equipment into a master plan that tracks the various lubricants around your facility.  For instance, maybe your mills and lathes all use the same lubricant, but other equipment in your facility doesn’t.  You can eliminate chances for error by locating the materials near the equipment.   Take a look at these examples and see how you might use this strategy in your shop.  I can guarantee that you won’t regret the time you took to create these plans.

Visual Machine Preventive Maintenance E-book

Finally,  if you haven’t had a chance to visit www.bradyid.com/visualmachine yet, feel free to take a look.  I am working with the Brady team to develop a resource center for Visual Machine material.  We recently added a Preventive Maintenance E-Book and have a new slide deck and video in the works.  Make sure to check back there for more!

Next week, I will focus on the drive systems.  Until then, “see with open eyes, and understand with an open mind.”

 

 

Visual Machine: Equipment Failure Causes – Contamination

The Forest and the Trees – Contamination of Components Leading to Equipment Failure

This week I will review one of the leading causes to equipment failure, but first I have a real life example to help the concept hit home.

With the cold settling this winter, I was finally backed in to a corner to address the fact that my truck had no heat.  It stopped working back in April (or so), but when the windows are frozen and the air temperature is below 20°F, my attention quickly turned to working on it.  I needed to take apart most of the HVAC compartment to see which of the four components of the system might be bad.  So, with a quick trip to the parts store and hope that the easiest fix was all that was needed, I replace a motor blower resistor.  Within about 10 seconds, I saw smoke coming from under my hood by the windshield.  I quickly turned off the blower, opened the hood to vent and looked back at the part.  Yep, you guessed it – I smoked the new resistor.  Resigned to the fact that it wasn’t going to be the easy and straightforward project I was hoping for, I went to get a new blower motor.  Add in $100 and some more time.

You might be wondering what the “lean” point is.  My learning was that my blower motor was shot because I wasn’t seeing the trees through the forest.  Any one who has had the privilege of doing this same maintenance knows that the original design of the truck’s interior does not allow you to quickly and efficiently see when troubles arise, and quickly and efficiently return it to standard.  The cabin air filters were extremely blinded off by junk – dirt, helicopter seeds, fuzz, etc.  The air was probably not flowing through effectively for years.  The blower motor’s bearings were shot.  More junk and contamination – all which contributed to the motor failure.  You have the same types of issues happening right now in your facility, on your equipment, just waiting to fail.

Equipment Contamination

Contamination

Contamination is one of the two leading causes of equipment failure (lubrication being the other).  But so often, we can’t see past the forest to determine which trees (components) are getting bad.  I am including a contamination and general cleaning checklist this week which you can download here:

Contamination and General Cleaning Checklist

Of primary importance is to look for contamination on the following:

  • Examine all drive systems – moving, rotating, sliding, rolling interfaces
  • Check all frames, beds, conveyors, transfer lines, feeders, chutes, rollers, etc
  • Look at all guide surfaces, fixtures, gages, dies, cylinders, tank interiors/exteriors, cables or other devices installed on the equipment
  • Unnecessary objects on body of the machine – spare parts, fixtures, tools, packing materials, chemicals
  • Switches and sensors – limit, micro, proximity and or photoelectric
  • Faceplates and surfaces of instruments, meters, displays, switches, control boxes
  • Covers, windows, view-plates, and other safety shields

All you have to do is spend 30 minutes walking around your plant floor to find good examples.  And don’t think that contamination is only on the machines.  Include in your definition of contamination anything around the facility that introduces clutter – think of contaminating your aisles with pallets, packaging materials, maintenance supplies and tools, etc.  Look to eliminate the sources of contamination – from the process, product, packaging, environment – to try to control the amount and frequency at which junk accumulates.

Next week, I will continue to look at contamination in various other corners of your equipment.  Until then, “see with open eyes, and understand with an open mind.”

For more on preventive maintenance – download this free e-book!

TPM Improvement Cycle: Inspect to Protect – Visual Machine

Let’s Inspect to Protect

Continuing where I left off last week with contamination, I will talk about the principles around a TPM improvement cycle, inspect to protect.

I was recently in a factory where a mysterious substance settled on top of everything just adjacent to a production cell.  Within the cell area you had welding, grinding, painting and some cleaning operations.  The “stuff” from those four process steps became airborne, and with a poorly functioning ventilation system, settled daily onto nearby product, equipment, conveyors, tooling, fixtures, floors, and probably people.  It wasn’t so bad that you’d drop everything to correct it; however, it was frequent enough that over time it was causing problems.  Since contamination is one of the two big enemies we face, we should not overlook any cause of it no matter how subtle.

Improvement Cycle to Handle Contamination

In the past, I used a phrase, “Clean to Inspect” to give the rationale for embarking on a 5S / TPM program.  The idea is that you don’t know where you have problems with your equipment if the problems are getting masked by the effects of the problem.  For example, a small but constant oil leak can drip down onto equipment, grabbing dust and other contamination with it.  Over time, the equipment just looks dirty, and because of the situation, you don’t bother to clean it because it’s just going to get dirty again.  Having a 5S program that just focuses on cleaning will not be enough to break the cycle of build-up.  But, having a rigorous TPM program that is founded on the following improvement cycle increases your odds of getting on a healthy path.  Let’s look at the graphic and understand what each step requires.

inspect to protect improvement cycle

Clean to Inspect

  • Every part of the equipment must be cleaned back to the original “as new” condition
  • Areas around the equipment must also be addressed

Inspect to Detect

  • Once the equipment is clean, you need to examine, in detail, every component
  • You are looking to detect why the equipment cannot stay in “as new” condition

Detect to Correct

  • When you detect the issues you need to engage your favorite problem solving methodology to list the “trival many” causes to find the “vital few”
  • Correction should be addressed by using a cross-functional team (maintenance, design engineering, quality, safety, process engineering, operators)

Correct to Perfect

  • Don’t let “better” get in the way of “perfect” … make sustainable changes that stick
  • Update any standards – cleaning, PM, operator-focused – that will sustain your condition

Perfect to Protect

  • Once you’ve reach “perfection” – again you probably won’t ever arrive there and be done – you need to implement sustainable means to protect your investment
  • When thinking of protecting the equipment, treat it as though it was personally yours

Reflect

After each step, you and the team should reflect on what was learned.  In the Lean world this is known as Yokoten and could include:

  • What part of the step was particularly effective
  • What does the team need to do to improve this step for the next time
  • Can the improvements from this step be quickly applied to other areas of the facility and equipment
  • How will you and the team ensure that there will be sustainability
  • Can the sustainable improvements be made visual
  • Other ideas you might have that are “tribal knowledge”

When you think of implementing your changes, a very useful format to communicate the information can be based on functional analysis.  In this method, the equipment and process functions are described by an active verb and noun-object.  Examples include:

  • Transfer fluid
  • Reduce noise
  • Clean belts
  • Remove guards
  • Life cover

Your homework this week is to pick a piece of equipment that you can take through the entire methodology.  You should select a machine that you can demonstrate each step clearly in a training / instructing / model area approach.  If the cross-functional team can address all the steps on a single machine, it will be more likely that they can transfer the knowledge again.  Next week, I will continue along this road.  Until then, “see with open eyes, and understand with an open mind.”

For more on preventive maintenance – download this free e-book!

Measuring Change Effectiveness

“I Solemnly Swear to…”

Well, here we are – the end of the calendar year.  For some of you this also corresponds to the end of your company’s fiscal year.  It’s a time to reflect on our performance of the past year, make plans on how to do things differently next year, and swear to hold to our plans for success.  Blah. Blah. Blah.  Same stuff, different year.  Why is it that we can be so hopeful for the coming year to be different, when we fundamentally are not changing one thing to enable those changes?

Of course, I don’t know.  It must just be human nature, the cooling of the earth during the winter months, or some other invisible force.  For the Lean practitioners out there, we know that “sustaining” any change must have a purposeful, well designed plan created to implement the new ideas.  The New Year brings us to the most profitable two months for any health club.  Memberships skyrocket at this time of the year.  However, the sad part is that they know it will only take 60 days or so and the clubs will be empty again.  Ever feel that way with your lean initiatives?  You spend all that time creating project charters, Gantt charts, implementation teams, ROI calculations, and training materials, but you know deep in your gut that things will be more difficult than people realize.

Louis L’Amour once profoundly said, the “Only thing that never changes, is that everything changes.”  Simple.  But there is a fundamental law of entropy that says things will tend to disorder if we don’t add some energy to the system.  Your facility will get dirtier, the machines more prone to breakdown, tooling strewn about the place, people not following a set process, etc, all because of ΔS.

Change Management is a science unto itself.  We don’t like to change.  In fact, the term “Change Agent” as applied to Six Sigma and Lean functional roles, doesn’t bring with it the enormity of the task you’ll face.  When I was at GE, we had a change management process called the Change Acceleration Process (CAP) that we taught to all “Change Agents.”  The reason was simple – there is no sense in making improvements, if those improvements are doomed to fail due to a lack of focusing on the people.  GE was able to systematize, commercialize and monetize this approach.  We taught other companies the CAP process.  So, since we are heading into the New Year, filled with excitement and hope and promise, I thought we should look at elements of the CAP process to increase our chances for a successful 2014.

Change Effectiveness Equation

At the core of the CAP process is a very basic “change effectiveness equation”:

E  =  Q  X  A

This unit-less equation essentially states that the Effectiveness (E) of your implementation is directly equal to the Quality (Q) of the idea, strategy, approach, improvement, etc multiplied by the Acceptance (A) of those ideas, strategies, approaches, improvements, etc.  The Acceptance factor has to do with people and their openness to receive the ideas.  So the Effectiveness goes up with higher quality ideas.  Effectiveness will also go up if the acceptance goes up.  The steps involved in CAP are as follows:

  1. Get a passionate leader to own the change and drive it to completion
  2. Create a Shared Need / Burning Platform / Strategic Vision / A3
  3. Shape the vision of #1 so that everyone can get excited about it and involved with it
  4. Mobilize the commitment and resources (top down and bottom up)
  5. Sustain the changes early and often by rewarding “wins”
  6. Monitor the steps 2 – 4 and make changes as required
  7. Make the organizational and structural changes necessary to make permanent the new state

Looking back on my CAP training, I realize that while there was nothing profound here, the principles can be applied to everything we do, especially since people will be involved.  Reflect back on your 2103 Lean programs – 5S, TPM, visual workplace, Strategy Deployment, training, A3 teams, whatever.  Were you as successful as you wanted to be?  Did you reach the heights of improvement that you targeted?  Have you forever changed the company culture the way all the textbooks tell you to do?  Did you save the company the $500K that we “are supposed” to drop to the bottom line?  If yes, congratulations!!  You overcame the inertia that was facing you.  If no, congratulations!!  You have another year to hone your skills.

Apply your 8-Step Problem Solving to those areas where you answered “no”.  What were the root causes for not getting the desired outcomes?  Did any of the root causes have to do with change management?  My guess is that there was indeed a link.

OK, now the important part.  What will you do differently this year?  Don’t be a health club in March – high memberships, but no members in sight.  Reflect now.  Create a new strategy now.  Learn from your efforts and adjust now.  The New Year brings all of us a fresh perspective.  Take advantage of this time of the year – people are naturally open to new things now!  Until next year, “see with open eyes, and understand with an open mind.”

TPM Framework Pillar Management

How do you manage your TPM framework?

Hey everyone.  We are about to embark on an eight week series which looks at how to keep our equipment running.  Based on the interest of the series called The Visual Machine, I plan to focus on one of the most important elements to sustain your initiative – standards.  For those that have followed this blog for some time know that I strongly believe visuals are the best way to sustain any initiative.  For keeping our equipment running, this might be your best tool.

Pillars of TPM frameworks.

There is a lot of information on the topic of Total Productive Maintenance (TPM) as it relates to equipment uptime.  Most successful companies approach TPM on an enterprise or system level, rather than on a discrete machine level.  Having a corporate focus ensures that the proper resources get allotted to the design, implementation and sustainability of the program.  Many TPM frameworks consist of “pillars” that need to be carefully managed:

  • Autonomous maintenance
  • Quality maintenance
  • Planned maintenance
  • Individual improvement
  • Education and training
  • Safety, health and environment
  • Office or administrative TPM
  • Development management
  • Early equipment management

At the foundation for the pillars is some sort of 5S program, continuous improvement approach, team work or focus on waste.  What is interesting is that people throw in many other operational types of programs into the TPM stew.  I believe the basic idea is to get us from breakdown maintenance to preventative maintenance to predictive maintenance.  In other words, move from fixing equipment only when it breaks down (when it is most expensive and most damaging to our operation) to a condition where we are constantly monitoring the “health” of our machines using predictive techniques like in-situ measurements.

Which pillar is most common in different TPM frameworks?

Of all the different frameworks that you can find, almost all will include Autonomous Maintenance.  What does this mean?  At a high level, you would concentrate on (1) restoration and improvement of basic machine conditions, (2) prevention of deterioration back to unwanted condition, and (3) optimization of your program.  These elements consist of:

  • Initial cleaning and inspection (also called “clean to inspect”)
  • Problem solving on why the equipment is getting dirty
  • Creation of standards
  • General inspection
  • Autonomous inspection (operator led)
  • Continuous improvement of standards
  • Implementation of ownership by operators

The key to creating a sustainable program is implementing visual standards.

As with all visuals, the easier to understand, the better.  The best visuals are placed at the point of need, and enable you to quickly and efficiently tell normal from abnormal.  When an abnormal condition exists, you should be able to return the situation quickly back to the standard.  TPM relies on the operators to do this instead of a traditional maintenance staff.  This is not to say that such a staff is not needed, but rather those tasks that can be done by an operator should be.  In this series we will discover some best practices for deploying standards that will sustain your pillars.  Stay tuned.  Until next week, “see with open eyes and understand with an open mind.”

Rick Ruzga

Rick Ruzga

Lean Services Engagement Manager

Rick is an executive level operational excellence leader with more than 15 years of delivering aggressive business results by implementing TPS style continuous improvement in manufacturing and transactional processes. Rick is a Certified Six Sigma Black Belt/Lean and Certified Quality Manager/OE (ASQ).

Linked In